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Abstract

Modal operational analysis methods are procedures to identify modal parameters of structures from the
response to unknown random excitations existing on buildings and in machines during operation. In many
practical cases, in addition to the random loads, harmonic excitations are also present due for instance to
rotating components. If the frequency of the harmonic component of the input is close to an eigenfrequency
of the system, operational modal analysis procedures fail to identify the modal parameters accurately.
Therefore, we propose a modification of the least-square complex exponential identification procedure to
include explicitly the harmonic component. In that way, the modal parameters can be identified properly.
We illustrate the efficiency of the proposed approach on the example of a beam structure excited by multi-
harmonic loads superposed on random excitation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Operational modal analysis (OMA) is a method, which allows a structure to be tested under
operating conditions. At present, OMA is limited to the case when the excitation loads can be
assimilated to stationary white-noise inputs. In practice however, many structures are vibrating
due to harmonic excitation in addition to stationary white noise. Harmonic excitation can occur
due to components like unbalanced rotors or fluctuating forces in electric actuators. Due to the
presence of harmonic excitation, the modal identification procedures might lose their robustness
and lead to inaccurate identified modal parameters.

A straightforward way of dealing with the harmonic response content in measured operational
signals consists in regarding them as being the response of virtual modes having zero damping.
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So while doing modal parameter identification of the whole signal, additional frequencies
associated to very low (theoretically zero) damping will be present and must then be spotted by
the analyst.

In practice, due to the presence of harmonics close to the structural mode, identification
methods usually give bad convergence of the parameters as the order of the identified model is
increased. This problem often occurs when trying to identify parameters when the eigenspectrum
is dense. When applying the polyreference least-square complex exponential (LSCE) method to
the impulse-like response derived from the random excitation, stability of the frequency lines
might converge to wrong modal parameters.

Special numerical filters can also be applied to filter-out harmonic components from the
measured response. Unfortunately in practice, filters are not perfect and if the harmonic frequency
is close to eigenfrequencies, the filtering will pollute the measured response so that the identified
modal parameters are perturbed.

In Ref. [1], a procedure based on statistical properties of the outputs [2] was proposed in order
to distinguish between harmonic response and narrowband stochastic response for output-only
modal testing. The authors in Ref. [1] define an indicator to identify harmonics from the signal
when the frequency domain decomposition is applied, but the example presented exhibits
harmonic frequencies well separate from the eigenfrequencies.

In this work, we are considering cases where the harmonic frequencies are close to the
eigenfrequencies. The single-reference LSCE method is considered as time-domain identification
algorithm. Observing that the frequency of the harmonic response part can be easily evaluated
either from the operational conditions or from the measured signal, we propose to explicitly
include non-damped harmonic components in the identification procedure. In that way, we force
the algorithm to identify the harmonic part of known frequency and zero damping.

In the next section, we briefly recall some theoretical background of an OMA method using
LSCE identification. We outline the modification we propose in order to account for harmonic
components in the response. Then in Section 3, we present a case study of a beam to illustrate the
effectiveness of the procedure.

2. Operational modal analysis

2.1. Natural excitation technique and complex exponential identification

Assuming that a system is excited by a stationary white noise, it has been shown in the natural
excitation technique (NExT) [3,4] that the correlation function RijðtÞ between the response signals
i and j at a time interval of t is similar to the response of the structure at i due to an impulse at j:
Assuming damping to be small, this is expressed by the relation [4]

RijðtÞ ¼ lim
T-N

1

T

Z T=2

�T=2
qiðtÞqjðt� tÞ dt ¼

XN

r¼1

friArj

mrod
r

eð�zron
r tÞ sinðod

r t þ yrÞ; ð1Þ

where fri is the ith component of the eigenmode number r of the conservative system, Arj is a
constant associated to the jth response signal taken as reference, mr is the rth modal mass, zr

and on
r are, respectively, the rth modal damping ratio and non-damped eigenfrequency,
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od
r ¼ on

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
and yr is the phase angle associated with the rth modal response. Hence, the

correlation between signals is a superposition of decaying oscillations having damping and
frequencies equal to the damping and frequencies of the structural mode.

As a consequence, modal parameter identification techniques like the LSCE method [5] can be
used to extract the modal parameters from the correlation functions between measured responses
to the noise input. In terms of the complex modes of the structure, the correlation function (1) can
be written as (see for instance [6])

RijðkDtÞ ¼
XN

r¼1

crie
srkDtCrj þ

XN

r¼1

cn

rie
snr kDtCn

rj; ð2Þ

where sr ¼ orzr þ ior

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2r Þ

q
and where Crj is a constant associated with the rth mode for the

jth response signal, which is the reference signal. Dt is the sampling time step and the superscript *
denotes the complex conjugate. Note that in conventional modal analysis, these constant
multipliers are modal participation factors. Numbering all complex modes and eigenvalues in
sequence, Eq. (2) can be written as

RijðkDtÞ ¼
X2N

r¼1

C0
rije

srkDt: ð3Þ

As sr appears in complex conjugate forms in this expression, there exists a polynomial of order
2N (known as Prony’s equation) of which esrDt are roots:

b0 þ b1V1
r þ b2V2

r þ?þ b2N�1V2N�1
r þ V2N

r ¼ 0; ð4Þ

where Vr ¼ esrDt and where b2N ¼ 1: fbg is the coefficient matrix of the polynomial. To determine
the values of bi; let us multiply the impulse response (3) for sample k by the coefficient bk and sum
up these values for k ¼ 0;y; 2N [7–9]:

X2N

k¼0

bkRijðkDtÞ ¼
X2N

k¼0

bk

X2N

r¼1

C0
rijV

k
r

 !
¼
X2N

r¼1

C0
rij

X2N

k¼0

bkVk
r

 !
¼ 0: ð5Þ

Hence, the coefficient fbg satisfy a linear equation whose coefficients are the impulse responses (or
correlation functions) at ð2N þ 1Þ successive time samples. In order to determine those
coefficients, relation (5) is written 2N times, starting at successive time samples. In other words,
2N Prony’s equations are written to build up a linear system that determines the coefficients fbg:

b0Rn þ b1Rnþ1 þ?þ b2N�1Rnþ2N�1 ¼ �Rnþ2N ; n ¼ 0;y; 2N � 1; ð6Þ

where, to simplify the notations, we use Rk ¼ RijðkDtÞ: From Eq. (6), we obtain 2N equations to
determine fbg: Note that more equations like (6) can be used to form an over-determined set
of equations for fbg: This might be useful in order to average out measurement noise for instance.
In that case, n in the system of Eq. (6) is varied till LX2N � 1: The linear system (6) can be
re-arranged and put in matrix form as

½R
fbg ¼ �fR0g: ð7Þ
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½R
 is an ðL � 2NÞ matrix whose rows are the sequence of sampled impulse response. Once the
coefficients fbg are computed by solving Eq. (7), the complex eigenvalues sr are found by
computing the roots of Prony’s polynomial (4).

The procedure as explained so far uses a single correlation function. In order to improve the
robustness of the method, one can write Eq. (7) for p correlation functions of several measured
degrees of freedom with respect to a single response signal as reference. One then obtains the over-
determined system:

½R
1
½R
2
^

½R
p

2
66664

3
77775fbg ¼ �

fR0g1
fR0g2
^

fR0gp

8>>><
>>>:

9>>>=
>>>;
: ð8Þ

A solution in a least-square sense can be found for fbg from Eq. (8). This can be achieved for
instance using a pseudo-inverse (see e.g., Ref. [10]). This technique is known as the single-
reference Least-Square Complex Exponential (LSCE) method.

Another variant of the LSCE approach uses response function with respect to several
references. Details can be found, e.g., in Ref. [8]. The polyreference LSCE is commonly considered
as an efficient identification method and will be used here as reference method.

2.2. OMA in the presence of harmonic excitation

If the signal contains a forced harmonic part due to a harmonic excitation on top of the
response to the noise excitation, the correlation between measured data will, in addition to the
impulse response described earlier, contain a non-damped harmonic part. This extra component
can be looked at as a non-damped virtual eigenmode of the system. Hence, the OMA procedure
described above could be used even in the presence of harmonic excitation. However, explicitly
including the harmonic in the identification procedure leads to a more efficient and robust
approach as explained next.

When a harmonic excitation of known (or a priori identified) frequency o is present, it can
easily be shown that the correlation functions have the form (3) with two extra terms
corresponding to eigenvalues sr ¼ 7io: There are thus two extra roots of Prony’s polynomial,
namely Vr ¼ esrDt ¼ e7ioDt:

Let us now explicitly express that Vr ¼ cosðorDtÞ � i sinðorDtÞ and Vr ¼ cosðorDtÞ þ
i sinðorDtÞ are roots of Eq. (6). Re-arranging the Prony’s equations for these two eigenvalues,
we find

0 sinðoDtÞ y sinðoð2N � 1ÞDtÞ

1 cosðoDtÞ y cosðoð2N � 1ÞDtÞ

" # b0

b1

^

b2N�1

8>>><
>>>:

9>>>=
>>>;

¼ �
sinð2NoDtÞ

cosð2NoDtÞ

( )
: ð9Þ

These two independent linear relations for the coefficients fbg must be satisfied by Prony’s
coefficients to represent exactly the known harmonic components.
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In general, we will assume there are m harmonic frequencies in the signal within the range of
frequencies considered. Adding the linear relations (9) to the linear system (8), we get

R0 y R2m�1 R2m y R2N�1

^ ^ ^ ^

RLp�1 y RLpþ2m�2 RLpþ2m�1 y RLpþ2N�2

0 y sinðo1ð2m � 1ÞDtÞ sinðo12mDtÞ y sinðo1ð2N � 1ÞDtÞ

1 y cosðo1ð2m � 1ÞDtÞ cosðo12mDtÞ y cosðo1ð2N � 1ÞDtÞ

^ ^ ^ ^

0 y sinðomð2m � 1ÞDtÞ sinðom2mDtÞ y sinðomð2N � 1ÞDtÞ

1 y cosðomð2m � 1ÞDtÞ cosðom2mDtÞ y sinðomð2N � 1ÞDtÞ

2
666666666666664

3
777777777777775

b0

b1

b2m�2

b2m�1

b2m

b2N�1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

¼ �

R2N

RLpþ2N�1

sinðo12NDtÞ

cosðo12NDtÞ

sinðom2NDtÞ

cosðom2NDtÞ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ð10Þ

In symbolic form, we can write

½A

ðLp�2mÞ

fb1g
ð2m�1Þ

þ ½C

ðLp�2N�2mÞ

fb2g
ð2N�2m�1Þ

¼ fEg
ðLp�1Þ

ð11Þ

and

½B

ð2m�2mÞ

fb1g
ð2m�1Þ

þ ½D

ð2m�2N�2mÞ

fb2g
ð2N�2m�1Þ

¼ fFg
ð2m�1Þ

: ð12Þ

From Eq. (12),

fb1g ¼ ½B
�1½fFg � ½D
fb2g
 ð13Þ

and substituting in Eq. (11), we obtain

½½C
 � ½A
½B
�1½D

fb2g ¼ fEg � ½A
½B
�1fFg: ð14Þ

From the over-determined system (14), fb2g can be found as a least-square solution. fb1g is then
retrieved from Eq. (13). Together fb1g and fb2g provide the coefficients of Prony’s polynomial.
The roots of the polynomial will include the harmonic frequencies since the procedure presented
here enforces it exactly.
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3. Experimental example

In order to investigate the efficiency of the proposed procedure, experiments have been done for
a pinned–pinned beam depicted in Fig. 1. A shaker was used to provide stationary noise excitation
as well as harmonic loads. A total of 8192 discrete time samples have been obtained for each
experiment. The data were sampled at 128 Hz: A preliminary analysis was carried out to know the
mode shapes and the frequencies. Accordingly, we placed four accelerometers to ensure good level
of measured response signal for the second bending mode. Harmonics were introduced close to
the second bending mode frequency.

In the examples, modal parameters will first be computed only with stationary white-noise input to
get the modal parameters as would be done in a normal OMA procedure. Then, we will consider the
cases when harmonic excitations are present along with the random loads. Modal parameters are
identified both with the polyreference LSCE method and by the single-reference LSCE modified to
explicitly account for harmonic components (see previous section). When the polyreference LSCE
method is used, correlation functions are computed with reference to the first two accelerometer
signals, leading to eight sets of correlation functions in total. When the single-reference LSCE method
is employed, we will consider correlation functions with reference to the first accelerometer only,
leading to four sets of correlation functions. For both identification methods, the number of rows L in
the data matrix is taken as L ¼ 200 so that the total number of discrete correlation values used in the
identification is 200þ 2N for each correlation function, N being the order of the identified model.

3.1. Pure stationary white-noise excitation

First the experiment was done with stationary white noise introduced between 18 and 28 Hz; to
excite the second bending mode properly. Eigenfrequencies and damping values were identified
with the polyreference LSCE method.

In Fig. 2 and Table 1, we report the convergence of the poles to the identified first, second and
third eigenfrequencies when the order N of the system is increased.

It can be observed that the first three eigenfrequencies are identified. Note however that, since
the stationary white-noise input was set for the experiment between 18 and 28 Hz; only the second
eigenfrequency can be assumed to be identified properly by the OMA procedure. The second
eigenfrequency was found to be 23:15 Hz and its associated damping is taken as 0.26%.

3.2. Single sine harmonic at 23.225 Hz

Let us now consider the case when a single-harmonic frequency is added to the response signal
close to the second bending frequency. This is achieved by adding a sinusoidal harmonic

ARTICLE IN PRESS

Shaker

accelerometers

1 2 3 4
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frequency to the input of the shaker along with the stationary white noise. As discussed in the
theory, we have introduced two more equations in the Hankel matrix of the single-reference
LSCE method to take into account the harmonic frequency.
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Fig. 2. PSD of acceleration at position 1 for pure random excitation and stability diagram for the polyreference LSCE

method.

Table 1

Frequencies and associated damping (white noise only)

Modes Polyreference LSCE

Freq.1 (Hz) Damp.1 (%) Freq.2 (Hz) Damp.2 (%) Freq.3 (Hz) Damp.3 (%)

30 6.59 0.23 23.16 0.27 50.57 0.09

28 6.59 0.23 23.16 0.29 50.57 0.09

26 6.59 0.23 23.16 0.30 50.57 0.09

24 6.59 0.23 23.17 0.28 50.57 0.09

22 6.59 0.22 23.15 0.26 50.57 0.09

20 6.59 0.22 23.15 0.26 50.57 0.09

18 6.59 0.22 23.15 0.26 50.58 0.09

16 6.60 0.23 23.15 0.26 50.58 0.08

14 6.60 0.23 23.15 0.26 50.57 0.07

12 6.60 0.23 23.15 0.26 50.57 0.07

10 6.61 0.24 23.15 0.24 50.57 0.07

8 6.61 0.25 23.16 0.21 50.54 0.09

6 6.61 0.40 23.18 0.21 50.52 0.17

4 6.61 0.60 23.23 0.32 50.37 0.61
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In Fig. 3, the harmonic frequency at 23:225 Hz is clearly visible in the PSD plot because of its
high peak. There is also a smaller peak at a frequency slightly below the harmonic frequency.
From the PSD, it is not clear if that secondary peak corresponds to the second bending mode
frequency. Applying the polyreference LSCE, the stabilization diagram identifies the dominating
harmonic peak with an associated damping of the order of 0.05%. But the polyreference LSCE
fails to identify the actual eigenfrequency properly even for an identification order of 40: Fig. 3
and Table 2 indicate a clear stable frequency line at 23:21 Hz computed by the Polyreference
LSCE method. Remembering that the eigenfrequency is at 23:15 Hz for the second bending mode
and that the harmonic frequency is at 23:225 Hz; one concludes that the polyreference LSCE
identification procedure is strongly influenced by the presence of the harmonic component.

Fig. 4 and Table 2 report the results obtained when applying the modified single-reference
LSCE approach proposed in this work. Obviously, since the harmonic component is explicitly
introduced in the identification procedure, the harmonic has an associated zero damping. The
identified eigenfrequency and its damping is very close to the second bending mode frequency and
damping. Both frequency and damping values are nearly invariant at different modal order, which
can be seen from Table 1 and Fig. 4. Hence, even for low modal orders, the modified single-
reference LSCE can identify the eigenparameters accurately.

3.3. Two square-shaped harmonics at 23.30 and 23.80 Hz

In order to investigate the efficiency of the method when non-sinusoidal harmonics are present,
we have introduced two periodic square wave excitations on top of the random loads, at
frequencies 23.30 and 23:80 Hz: Note that the additional periodic loads have fundamental
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Fig. 3. PSD of acceleration at position 1 for a combined single-harmonic and random excitation, and stabilization

diagram for the polyreference LSCE method.
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Table 2

Frequencies and associated damping identified by the polyreference LSCE and the modified single-reference LSCE

methods (random and single-harmonic excitation)

Modes Polyreference LSCE Modified Ref. LSCE

Freq.1 (Hz) Damp.1 (%) Freq.2 (Hz) Damp.2 (%) Freq.3 (Hz) Damp.3 (%)

40 23.18 0.08 — — 23.15 0.31

38 23.18 0.05 — — 23.15 0.29

36 23.20 0.08 — — 23.15 0.29

34 23.21 0.05 — — 23.16 0.30

32 23.21 0.05 — — 23.15 0.29

30 23.21 0.06 — — 23.15 0.29

28 23.21 0.06 — — 23.14 0.32

26 23.21 0.07 — — 23.16 0.26

24 23.21 0.09 — — 23.16 0.23

22 23.22 0.10 — — 23.16 0.24

20 23.24 0.22 — — 23.15 0.25

18 23.23 0.04 23.32 0.28 23.15 0.22

16 23.23 0.03 23.35 0.65 23.15 0.21

14 23.22 0.03 23.35 0.81 23.16 0.21

12 23.16 0.22 — — 23.15 0.22

10 23.21 0.03 — — 23.15 0.23

8 23.21 0.12 — — 23.17 0.25

6 23.22 0.03 23.26 0.01 23.18 0.28

4 23.22 0.03 — — — —
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Fig. 4. PSD of acceleration at position 1 for a combined single-harmonic and random excitation, and stabilization

diagram of the modified single-reference LSCE.
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frequencies very close to the second bending mode frequency, namely 23:15 Hz: Also, because the
periodic excitations have a square waveform, they have a very strong fundamental component so
that, in the response, mainly the harmonic response corresponding to the fundamental frequencies
will appear.

In Fig. 5, two peaks at 23.30 and 23:80 Hz are clearly observed. Again, a secondary peak is
present slightly below 23:30 Hz; which might be due to the second bending mode frequency. From
Table 3 and Fig. 5 it can be concluded that, when using the polyreference LSCE, the identified
frequencies are associated to the two fundamental harmonic frequencies. Note that the identified
damping corresponding to the harmonic frequencies is not small, while there should be null in
theory. Hence, in practice, it would be difficult at this point to assimilate the identified modes to
harmonic responses and the analyst would probably conclude that the identified parameters
correspond to true eigenmodes.

When applying the modified single-reference LSCE, we have introduced in the Hankle matrix
two harmonic components of frequencies corresponding to the periodic excitations, namely 23.30
and 23:80 Hz: The stabilization diagram is shown in Fig. 6. The last two columns in Table 3 give
the identified frequencies and damping values. The identified harmonic parameters are not
reported in the table since, by construction, they have the exact harmonic frequency and zero
damping. It is seen that the identified eigenfrequency and the associated damping are very close to
the expected values for the second bending mode. Therefore, whereas we failed to get any correct
modal parameters from the polyreference LSCE method, the modified single-reference approach
allows identification of the eigenparameters in a robust manner.

This example indicates that the modified single-reference LSCE method can be expected to be
efficient for many general periodic loads that appear additionally to the random excitation.
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Fig. 5. PSD of the acceleration at position 1 for random loads and two additional periodic square excitations, and

stabilization diagram from the polyreference LSCE method.
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Indeed, if the periodic excitation has a waveform such that significant superharmonic components
are present, one can easily introduce in the modified single-reference LSCE several super-
harmonics for the identification.

3.4. Three additional harmonics at 22.40, 22.65 and 22.90 Hz

Now three sine harmonic frequencies at 22.40, 22.65 and 22:9 Hz are given as input to the
shaker along with the stationary white noise in order to investigate the effectiveness of the new
method in the presence of strong multi-harmonics. As mentioned in the theory, we have
introduced all three harmonics in the Hankel matrix of the single-reference LSCE method to take
into account the harmonic frequencies.

In Fig. 7, three harmonic frequencies can be clearly identified at 22.40, 22.65 and 22:90 Hz: We
also observe just after the third harmonic frequency, a peak which corresponds to the second
bending mode frequency.

As shown in Table 4 and Fig. 7, the polyreference LSCE method exhibits two stabilization lines.
Those lines are at 22.47 and 22:90 Hz; which correspond to two of the harmonic frequencies
introduced in the signal. There is no sign of the second harmonic frequency in the graph.
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Table 3

Frequencies and associated damping for both polyreference LSCE and single-reference LSCE method (two additional

periodic excitations with square waveform)

Modes Polyreference LSCE Modified LSCE

Freq.1 (Hz) Damp.1 (%) Freq.2 (Hz) Damp.2 (%) Freq.3 (Hz) Damp.3 (%)

40 23.26 0.11 23.90 0.07 23.17 0.23

39 23.26 0.11 23.90 0.03 23.17 0.24

37 23.26 0.11 23.90 0.04 23.17 0.25

35 23.26 0.12 23.91 0.04 23.17 0.25

33 23.26 0.12 23.93 0.14 23.17 0.25

31 23.26 0.11 23.92 0.10 23.17 0.26

29 23.26 0.11 23.92 0.09 23.17 0.28

27 23.25 0.08 23.89 0.12 23.18 0.30

25 23.27 0.04 23.89 0.06 23.17 0.27

24 23.26 0.09 23.92 0.11 23.17 0.25

23 23.26 0.10 23.92 0.11 23.18 0.27

22 23.25 0.02 23.87 0.19 23.18 0.27

20 23.29 0.01 23.84 0.09 23.19 0.29

18 23.27 0.24 23.47 0.70 23.19 0.34

16 23.27 0.16 — — 23.19 0.31

14 23.27 0.16 — — 23.18 0.37

12 23.26 0.16 — — 23.16 0.43

10 23.26 0.15 24.05 0.07 23.14 0.26

9 23.26 0.15 24.03 0.29 23.13 0.28

8 23.26 0.14 23.96 0.28 23.34 0.79

7 23.26 0.14 24.01 1.26 — —

P. Mohanty, D.J. Rixen / Journal of Sound and Vibration 270 (2004) 93–109 103



Although in theory those frequencies should be associated to zero damping, the results in Table 4
indicate that the damping of the identified harmonic parts becomes small only for high modal
orders. The polyreference LSCE does not identify the actual eigenfrequency.
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Fig. 6. PSD of the acceleration at position 1 for random loads and two additional periodic square excitations, and

stabilization diagram from the modified single-reference LSCE method.
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Fig. 7. PSD of the acceleration at position 1 for random loads and three additional harmonic excitations, and

stabilization diagram from the polyreference LSCE method.
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Fig. 8 and Table 4 represent the stability diagram for the modified LSCE method proposed in
this paper. The first three frequency lines belong to the three harmonics, and their frequencies
have been set so as to exactly match the harmonic frequencies, the associated damping being zero
(those frequencies and damping values are not given in the table). The other identified frequency
and damping is listed in Table 4 and can be seen to be very close to the frequency and damping of
the second mode identified earlier. Note however that the damping ratio is slightly under-
estimated.

3.5. Robustness of the modified LSCE

From the experiments described above, it can be concluded that the polyreference LSCE
method cannot identify the eigenfrequencies accurately when harmonic frequencies close to the
natural frequencies are present in the signal. However, the modified single-reference LSCE
approach proposed here allows identification of the modal parameters with high confidence in
that case.

In order to further illustrate the robustness of the new approach and to investigate its sensitivity
to the interval between eigenfrequency and harmonic frequency, we show in Fig. 9 the computed
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Table 4

Frequencies and associated damping from the polyreference LSCE and the modified single-reference LSCE methods

(three additional harmonic excitations)

Models Polyreference LSCE Modified LSCE

Freq.1 (Hz) Damp.1 (%) Freq.2 (Hz) Damp.2 (%) Freq.3 (Hz) Damp.3 (%)

40 22.44 0.00 22.90 0.04 23.13 0.18

39 22.46 0.10 22.90 0.06 23.13 0.17

38 22.47 0.19 22.90 0.06 23.13 0.17

37 22.46 0.23 22.90 0.07 23.13 0.20

36 22.47 0.23 22.90 0.06 23.14 0.20

35 22.47 0.25 22.90 0.06 23.13 0.25

34 22.47 0.29 22.90 0.07 23.14 0.27

33 22.47 0.31 22.90 0.07 23.14 0.31

32 22.47 0.27 22.90 0.07 23.13 0.31

31 22.48 0.26 22.90 0.06 23.12 0.36

30 22.48 0.27 22.90 0.06 23.14 0.50

29 22.49 0.26 22.90 0.06 23.13 0.54

28 22.49 0.27 22.90 0.06 23.13 0.54

27 22.49 0.28 22.90 0.06 23.15 0.54

26 22.50 0.26 22.90 0.06 23.15 0.52

24 22.52 0.35 22.90 0.06 23.18 0.50

22 22.51 0.40 22.90 0.06 23.17 0.70

20 22.54 0.43 22.90 0.06 23.18 1.50

18 22.54 0.49 22.90 0.06 — —

16 22.57 0.72 22.90 0.06 — —

14 22.43 0.40 22.90 0.05 — —

12 22.45 0.39 22.91 0.05 — —
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modal parameters as a function of the harmonic frequency. We recall that the eigenfrequency
corresponding to the second bending mode is 23:15 Hz: In this example, the level of the harmonic
input relative to the level of random excitation was kept constant.

Fig. 9 shows that the modified single-reference LSCE can identify the eigenfrequency with an
accuracy of about 0:01 Hz for a harmonic component 0.2% lower or 0.4% higher than the
eigenfrequency. It also identifies the damping ratio within 0.05% for a harmonic frequency 0.5%
lower or 0.3% higher than the eigenfrequency. The polyreference method fails to identify the
eigenfrequency and the corresponding damping accurately when the harmonic frequency is so
close to the eigenfrequency. Hence, clearly, the modified single-reference LSCE significantly
improves the robustness of the identification when the harmonic frequency is close to an
eigenfrequency.

Obviously, in the modified LSCE method proposed here, it is important to introduce the exact
harmonic frequency in the identification a priori. In Fig. 10, we consider the case where the
harmonic frequency specified in the identification with the modified LSCE algorithm is different
from the exact harmonic frequency, namely 23:225 Hz in this case. One observes that if a
harmonic frequency different from the actual 23:225 Hz of the input excitation is specified, the
identified frequencies vary linearly with respect to the harmonic frequency input in the vicinity of
the exact harmonic frequency. When the harmonic frequency used in the identification is
significantly higher than the exact harmonic frequency, the identified eigenfrequency converges to
the one identified by the standard polyreference LSCE method whereas the identified damping
ratio decreases significantly. Hence, it is essential to introduce in the modified LSCE algorithm a
harmonic frequency very close to the actual one. Otherwise, the harmonic component explicitly
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Fig. 8. PSD of the acceleration at position 1 for random loads and three additional harmonic excitations, and

stabilization diagram from the modified single-reference LSCE method.
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included in the identification is not capable of representing the harmonic part of the signal
properly and the modification of the LSCE gives no benefit. In the worse case, the modification in
the LSCE has no effect and the identified parameters are the ones obtained by standard LSCE
algorithms.
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4. Possible further developments

The method proposed in this work was found to be efficient in identifying modal parameters in
the presence of harmonic excitation with a frequency close to an eigenfrequency. It is therefore an
interesting method for applications where harmonic loads are inherently present together with
operational noise excitation. For instance, we are planning to apply the method to machines with
rotating components such as tire test rigs and wind turbines. It can easily be extended to include
any general periodic component by considering its Fourier expansion.

The modified LSCE procedure can also be extended to explicitly include damped oscillations
known a priori. This could be helpful in order to allow the identification of modes only
weakly present in a signal and which are masked by eigenmodes strongly dominant. The
procedure would then first consist of identifying the dominant components and then, in a
second step, include the dominant modes in the LSCE explicitly to identify the modes
weakly present in the signal. Other research directions currently considered also include the
application of the proposed modified LSCE to the identification of super- and sub-harmonics in
non-linear systems.

5. Conclusion

We have proposed a modification of the single-reference least-square complex exponential
(LSCE) identification method used in the context of operational modal analysis. This
modification allows one to explicitly account for harmonic contents in the measured signal.

When the harmonic excitation part has a frequency close to eigenfrequencies that one
tries to identify, standard LSCE methods fail to identify the modal parameters accurately. In
that very challenging situation, the modified LSCE proposed here yields accurate identification
even if the harmonic excitation frequency is very close to an eigenfrequency. Even in the
case where the standard polyreference LSCE can identify the modal parameters accurately
(that is when the harmonic frequency is not too close to an eigenfrequency), the proposed
modified LSCE algorithm yields accurate parameters for a much lower assumed
system order.

The experimental example described here illustrates the efficiency and robustness of the
modified LSCE. It is also shown that, when the harmonic frequency input in the modified LSCE is
different from the actual harmonic frequency in the signal, the modified LSCE simply degenerates
to a standard algorithm.
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